Discrepancy principle for DSM II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrepancy principle for DSM II

Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N(A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, ‖fδ − f‖ ≤ δ. Given fδ, one wants to construct uδ such that limδ→0 ‖uδ − y‖ = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are for...

متن کامل

Discrepancy principle for DSM

Let Ay = f , A is a linear operator in a Hilbert space H, y ⊥ N (A) := {u : Au = 0}, R(A) := {h : h = Au, u ∈ D(A)} is not closed, f δ − f ≤ δ. Given f δ , one wants to construct u δ such that lim δ→0 u δ − y = 0. A version of the DSM (dynamical systems method) for finding u δ consists of solving the problem ˙ u δ (t) = −u δ (t) + T −1 a(t) A * f δ , u(0) = u 0 , (*) where T := A * A, T a := T ...

متن کامل

On the discrepancy principle

A simple proof of the convergence of the variational regularization, with the regularization parameter, chosen by the discrepancy principle, is given for linear operators under suitable assumptions. It is shown that the discrepancy principle, in general, does not yield uniform with respect to the data convergence. An a priori choice of the regularization parameter is proposed and justified for ...

متن کامل

A new discrepancy principle

The aim of this note is to prove a new discrepancy principle. The advantage of the new discrepancy principle compared with the known one consists of solving a minimization problem (see problem (2) below) approximately, rather than exactly, and in the proof of a stability result. To explain this in more detail, let us recall the usual discrepancy principle, which can be stated as follows. Consid...

متن کامل

Discrepancy principle for the dynamical systems method

1 Discrepancy principle for the dynamical systems method Abstract Assume that Au = f, (1) is a solvable linear equation in a Hilbert space, ||A|| < ∞, and R(A) is not closed, so problem (1) is ill-posed. Here R(A) is the range of the linear operator A. A DSM (dynamical systems method) for solving (1), consists of solving the following Cauchy problem: ˙ u = −u + (B + (t)) −1 A * f, u(0) = u 0 , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation

سال: 2008

ISSN: 1007-5704

DOI: 10.1016/j.cnsns.2006.11.006